Framework Type Data

Idealized cell data: orthorhombic, Cmce, $a=8.7 \AA, b=20.1 \AA, c=10.2 \AA$
Coordination sequences and vertex symbols:

$\mathrm{T}_{1}(16,1)$	4	10	21	37	57	82	112	145	184	228	$4 \cdot 4 \cdot 6_{2} \cdot 8_{3} \cdot 6_{3} \cdot 8_{3}$
$\mathrm{~T}_{2}(16,1)$	4	11	22	38	59	83	113	147	186	230	$4 \cdot 6_{2} \cdot 6 \cdot 6_{2} \cdot 6 \cdot 6_{3}$

Secondary building units: 8 or $6-2$ or 4
Composite building units:
nsc
narsarsukite
chain

Materials with this framework type:

*AlPO-D ${ }^{(1)}$
APO-CJ3 ${ }^{(2)}$

Type Material Data

Crystal chemical data:

[$\mathrm{Al}_{16} \mathrm{P}_{16} \mathrm{O}_{64}$]-APD
(forms irreversibly from AlPO-C at around $200^{\circ} \mathrm{C}$)
orthorhombic, $P c a 2_{1}, a=19.187 \AA, b=8.576 \AA, c=9.804 \AA^{(1)}$
(Relationship to unit cell of Framework Type: $a^{\prime}=b, b^{\prime}=a, c^{\prime}=c$)

Framework density:
 $19.8 \mathrm{~T} / 1000 \AA^{3}$

Channels: $\quad[010] 82.3 \times 6.0^{*} \leftrightarrow[201] 81.3 \times 5.8^{*}$

distorted 8-ring along [201]

References:

(1) Keller, E.B., Meier, W.M. and Kirchner, R.M. Solid State Ionics, 43, 93-102 (1990)
(2) Wang, K.X., Yu, J.H., Zhu, G.S., Zou, Y.C. and Xu, R.R. Microporous Mesoporous Mat., 39, 281-289 (2000)

