Framework Type Data

Idealized cell data: monoclinic, $C2/m$, $a = 25.6\text{Å}$, $b = 5.3\text{Å}$, $c = 12.1\text{Å}$, $\beta = 109.3^\circ$

Coordination sequences and vertex symbols:

<table>
<thead>
<tr>
<th>T_1</th>
<th>4</th>
<th>11</th>
<th>22</th>
<th>38</th>
<th>60</th>
<th>88</th>
<th>113</th>
<th>147</th>
<th>190</th>
<th>243</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_2</td>
<td>4</td>
<td>11</td>
<td>22</td>
<td>38</td>
<td>60</td>
<td>86</td>
<td>115</td>
<td>147</td>
<td>191</td>
<td>238</td>
</tr>
<tr>
<td>T_3</td>
<td>4</td>
<td>12</td>
<td>21</td>
<td>37</td>
<td>62</td>
<td>84</td>
<td>119</td>
<td>147</td>
<td>188</td>
<td>239</td>
</tr>
<tr>
<td>T_4</td>
<td>4</td>
<td>12</td>
<td>23</td>
<td>37</td>
<td>59</td>
<td>85</td>
<td>120</td>
<td>154</td>
<td>184</td>
<td>231</td>
</tr>
<tr>
<td>T_5</td>
<td>4</td>
<td>12</td>
<td>21</td>
<td>37</td>
<td>58</td>
<td>87</td>
<td>119</td>
<td>154</td>
<td>182</td>
<td>227</td>
</tr>
<tr>
<td>T_6</td>
<td>4</td>
<td>12</td>
<td>24</td>
<td>39</td>
<td>55</td>
<td>85</td>
<td>122</td>
<td>156</td>
<td>188</td>
<td>225</td>
</tr>
<tr>
<td>T_7</td>
<td>4</td>
<td>12</td>
<td>23</td>
<td>38</td>
<td>59</td>
<td>83</td>
<td>115</td>
<td>155</td>
<td>192</td>
<td>233</td>
</tr>
</tbody>
</table>

Secondary building units: 5-[1,1]

Composite building units:

Materials with this framework type:

*ZSM-12$^{(12)}$
[B-Si-O]-MTW$^{(3)}$
[Ga-Si-O]-MTW$^{(4)}$

CZH-5$^{(5)}$
NU-13$^{(6)}$
TPZ-12$^{(7)}$

Theta-3$^{(8)}$
VS-12$^{(9)}$
Type Material Data

Crystal chemical data: \[\text{Na}_n \text{(H}_2\text{O})_3 \text{Al}_6\text{Si}_{12-n}\text{O}_{36} \text{MTW}, n < 5 \]
monoclinic, \(C2/c \)
\[a = 24.863\text{Å}, b = 5.012\text{Å}, c = 24.328\text{Å}, \beta = 107.72^\circ \] (2)

Framework density: 19.4 T/1000Å³

Channels: [010] 12 5.6 x 6.0*

12-ring viewed along [010]

References: